Wave: - an oscillation at a frequency frequency of oscillation is fund mental
$T=$ period \equiv time for 1 full oscillation
$\theta=$ fRequency \equiv how many oscillations per time for 1 full oscillation: $f=\frac{1}{T}$

Traveling wave: oscillation moves with a velocity T oscillation is "transverse" to dir of mistion \longrightarrow direction of motion
if oscillation is of a ball it will trace out a sine wave when travelling
(the oscillations ball

waveleng th: distance over which oscillation repeats

$$
v=\frac{\lambda}{\tau}=\lambda f
$$

if ball velocity slows down, f stays the same!
ex: wafer waves are franscrense waves (amplitude \perp velocity)
EM waves are transverse $\left(\stackrel{\rightharpoonup}{S}=\frac{\vec{E} \times \vec{B}}{\mu_{0}}\right)$
longitudinal waves: oscillation is along dir of motion
ex:

if you displace lit ball (along ass is of the sping) it will set up a longitudinal wave that will propagate along at some velocity \Rightarrow sound is a longitudinal pressure wave

Additions of waves
$2 \in M$ waver, oscillating \vec{E} fields, along \hat{x} dir

$$
\begin{aligned}
& \vec{E}_{1}=E_{1} \hat{x} \cos \left(k_{1} z-w, t\right) \\
& \vec{E}_{2}=E_{2} \hat{x} \cos \left(k_{2} z-w_{2} t\right)
\end{aligned}
$$

if they overlap $\rightarrow E$ fields add linearly

$$
\vec{E}_{\overline{R O T}}=\vec{E}_{1}+\vec{E}_{2}
$$

waves (oscillations) add Ineouly
\Rightarrow any wares of any kind (not just EM wares) this is the principle of superposition
\Rightarrow in this chapter we are studying this for waves that have same freq is waveleng th: even amplitude
But they can have dillerent phases
wave 1: $A(x)=A_{0} \cos (2 x)$ (snapshot at sone time t)
If same amp

- 2: $B(x)=A_{0} \cos (b x+\phi)$
$\phi=$ phase diff [Between the 2 waves

ϕ is the angular phase diff
special cases:
$\phi=0: A+B=2 A_{0} \cos (A x) \Rightarrow{ }^{\prime}$ constructive interference"

$$
\phi=\pi: A+B=A_{\cos }\left(B_{x}\right)+A_{0} \cos \left(k_{x}+\pi\right)
$$

$$
\begin{aligned}
& =\pi: A+B=A_{0} \cos \left(B_{x}\right)+A_{0} \cos \left(k_{x}+\pi\right) \\
& \text { expend } \cos (k x+\pi)=\cos k x \operatorname{cog}^{-1} \pi-\sin k x \sin \pi
\end{aligned}
$$

$$
=-\cos \sqrt{2} x
$$

so $A+B=A_{0} \cos (12 x)-A_{0} \cos (12 x)=0$ this is "destructive inter ference"
we are interested in

1. interference in $2 \leq 3$ dimension
2. condition for con ide sfunctive interference in $2 \mathbb{~} 3$ dimensions

Interference in 2 dimensions
\Rightarrow drop rock in water - waves propagate outward (concentric)

light waves are in 3-D but 2-D is su/lkient to understand interference or 3-1
2 waves in 2D, same amplitude \& wave length

Peak : tHrough over lap \Rightarrow destunctive interference intersection of both peaks gives constructive induference
\Rightarrow resulting amplitude is sum of each $2^{\text {ns }}$ for blue

Condition for constructive in fer ference:

- each wave goes a distance r chon origin to a point

now overlap:

for constructive interference at any porat, want each path length to be some multiple of wave length λ

$$
r_{1}=n_{1} \lambda, r_{2}=n_{2} \lambda \quad n \equiv \text { integer }
$$

or $\quad r_{2}-r_{1} \equiv \Delta r=n \lambda$ where $n \equiv$ integer

- So for constructive inter ference at a point:

$$
\Delta r=n \lambda \quad \text { consturfive }
$$

- for destructive interference, one of the distances has to be $x \lambda+\frac{1}{2} \lambda$ (but only one, not both!]

$$
\Delta v=\left(n+\frac{1}{2}\right) \lambda \text { desfactive }
$$

Phase difference
phase ϕ is the distance, in angle space $0-2 \pi$ so $\phi=2 \pi \frac{r}{\lambda}$ if $r=\lambda, \phi=2 \pi$ phase díllerence between 2 waves at pt of interest: $\Delta \phi=\phi_{2}-\phi_{1}=\frac{2 \pi\left(r_{2}-r_{1}\right)}{\lambda}=\frac{2 \pi}{\lambda} \Delta r$ can write $k=\frac{2 \pi}{\lambda}$ "wave number" so $\Delta \phi=k \Delta r$
condition for:
construe five interference: $\Delta \phi=k \cdot n \lambda=2 \pi n$ destue five is $\quad \Delta \phi=k\left(n+\frac{1}{2} \lambda\right)=2 \pi\left(n+\frac{1}{2}\right)$

Interference - intensity
\rightarrow take 2 waves, same amplituck s" wavelength but with a constant phase difference ϕ

$$
\left.\begin{array}{l}
S_{1}=A \cos (k x) \\
S_{2}=A \cos (k x+\phi)
\end{array}\right\} k=\frac{2 \pi}{\lambda}
$$

ex: S_{1}

add together: $S=S_{1}+S_{2}$ principle of superposition

$$
S=A \cos k x+A \cos (k x+\phi)
$$

eg for EM wave,

$$
\begin{aligned}
& E_{1}=E_{0} \cos k x \\
& E_{2}=E_{0} \cos (1 x+\phi)
\end{aligned}
$$

$$
E=E_{1}+E_{2}
$$

intensify $I=\varepsilon_{0} E^{2} C$ for $E M$
in general: infensity/power always comes nom squaring ware function
fo EM:

$$
E^{2}=\left(E_{1}+E_{2}\right)^{2}
$$

easiest method: subtract the from each wave

$$
E_{1}=E_{0} \cos \left(\sqrt{2} x-\frac{d}{2}\right) \quad E_{2}=E_{0} \cos \left(k x+\theta_{12}\right)
$$

let $\theta=\dot{\phi} / 2$ to make it easier to calculate

$$
\begin{aligned}
& E_{1}=E_{0} \cos \left(E_{x}-\theta\right) \quad E_{2}=E_{0} \cos \left(l_{x x}+\theta\right) \\
& E_{1}+E_{2}=E_{0}(\cos (2 x-\theta)+\cos (12 x+\theta)) \\
& =\frac{E_{0}}{2} \operatorname{Re}\left(e^{i(b x-\theta)}+e^{-i(b x-\theta)}+e^{i(b x+\theta)}+e^{-i(k x+\theta))}\right. \\
& =\frac{E_{0}}{2} \operatorname{Re}(e^{i k x}[\underbrace{\left.e^{-i \theta}+e^{i \theta}\right]}_{2 \omega \theta}+e^{-i k_{x}}\left[e^{i \theta}+e^{-i \theta}\right]) \\
& =E_{0} \cos \theta \operatorname{Be}\left(e^{i k x}+e^{-i k x}\right) \\
& =2 E_{0} \cos k x \cos \theta \\
& =2 E_{1,2} \cos \theta \text { where } E_{62} E_{0} \cos \left(k x_{0}\right) \\
& =2 E_{1,2} \cos \left(\frac{h}{2}\right)
\end{aligned}
$$

if $d=0$ then $E=2 E_{0} \cos k x$ (constructive) and $P_{0}=\varepsilon_{0} C E^{2}=4 \varepsilon_{0} C E_{0}^{2} \cos ^{2}[x$
for $\phi \neq 0$ then intensity $I=4 E_{1,2}^{2} \cos ^{2} \phi I_{2} \cdot \varepsilon_{0} C$

$$
I=I_{0} \cos ^{2} \phi / 2
$$

where $\phi=$ phase dill nefween the waves and $I_{0}=4 E^{2}$
"2 slit" intuference
take plane wave:

can make source if 2 circular waves.
 each slit will let wares pass but will then spread out as if the slit were a pt source of waves
\Rightarrow waves n nom slits will have same λ i $\phi \Rightarrow$ "coherent"
\Rightarrow make slit width $<$ wave length of light, and d now add a screen that can record resting light intensity
point on sheen where was infer pere concteur finely well screen have more intensity Than who waves intulere dectuctively

At the sueen:
\Rightarrow max intensity is where inferference is constuc tive

$$
\Delta r=\vec{n} \lambda
$$

\Rightarrow min infensity is akere infaference is destur tive

$$
\Delta r=\left(n+\frac{1}{\varepsilon}\right) \lambda
$$

blow up of region near slits

$\Delta r=\delta=d \sin \theta=n \lambda$ condition for constuctice infer/erence
simitonly $\delta=d \sin \theta=\left(n+\frac{1}{2}\right) \lambda$ condition for destiuctive
now more screen so $R \gg d$

this tells you where the maximum intensities from interference
ax: single radio transmitter transmits uniformly in all directions
$\Rightarrow 2$ transmitters separated by a distanced

by adding multiple transmitters close toge then, can "beam" most of the energy along a more narrow fath. see:
http://www.physics.umd.edu/hep/drew/optics/antenna.html

